
Artificial Artemia as a feed supplement for nursery phase Litopenaeus vannamei culture in biofloc dominated zero-exchange raceways

André Braga, Timothy C. Morris, Neil F. Gervais Jr., and Tzachi M. Samocha

Texas A&M AgriLife Research Mariculture Laboratory at Flour Bluff, Corpus Christi, TX

Aquaculture 2013 Nashville, Tennessee, USA. February 21-25, 2013

Nursery Systems

- ➤ Incorporation of a nursery phase in the production cycle can improve the system's profitability
- The nursery phase is defined as the intermediate step between the early PL and the grow-out phase
- Production of healthy juveniles in nursery system is an important issue for shrimp producers
- ➤ Feeding shrimp larvae and young PL *Artemia* nauplii is often regarded as important for production of healthy shrimp

Introduction

- ➤ Biosecurity issues, limited supply, & fluctuating costs of Artemia cysts forced users to investigate alternative feeds
- Attractability, palatability, digestibility and potential negative impacts on water quality are only few of the impediments to successful replacement of live or frozen *Artemia* in PL and juveniles production
- EZ *Artemia* is a new product developed based on these and other criteria to satisfy the need for *Artemia* replacement

Objective

The current study was designed to evaluate EZ *Artemia* as a feed supplement for young *Litopenaeus vannamei* postlarvae in a 49-day nursery study in six RWs under biofloc dominated zero-exchange conditions

- ➤ Six 68.5 m² (40 m³) greenhouse-enclosed RWs with a mean water depth of 0.45 m
- ➤ Each RW has eighteen, 5.1 cm airlift pump, six 0.9 m air diffusers, a Venturi injector operated by a 2 hp centrifugal pump, and a center partition positioned over a 5.1 cm PVC pipe with spray nozzles to enhance bottom water circulation and deliver oxygen-rich water across the length of each RW

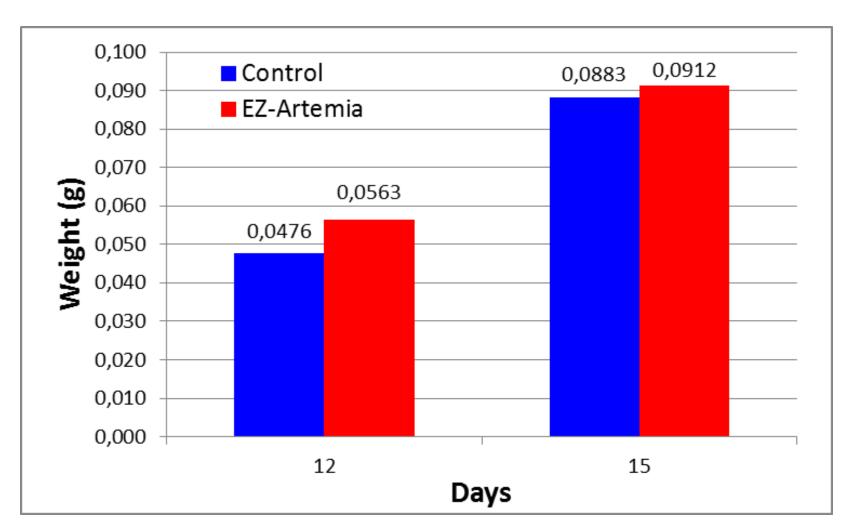
- ➤ Each RW had DO monitoring systems (YSI 5500, YSI Inc., Yellow Springs, OH)
- ➤ RWs were stocked with PL₉ (0.0025) at 1,000 PL/m³ produced from a cross between Fast-Growth and Taura resistant lines purchased from Shrimp Improvement System, Islamorada, FL
- ➤ All PL had been fed the EZ *Artemia* during the hatchery phase

- ➤ Each RW was filled with a mixture of seawater (20 m³), municipal freshwater (10 m³), and biofloc-rich water (10 m³) from a previous grow-out study
- ➤ Salinity was adjusted to 30 ppt
- Foam fractionators were used to maintain TSS and SS levels in the range of 200-300 mg/L and 10-14 mL/L, respectively

- ➤ For the first 10 days, PL in three control RWs were fed only a 50% CP dry diet (PL Raceway Plus, Zeigler Bros., Gardners, PA) while those in the other three RWs were fed a combination of the same dry diet (75% by wt.) and EZ *Artemia*, Zeigler Bros. (25% by wt.)
- For the remainder of the study, shrimp in both treatments received a 40% CP dry diet (Shrimp PL 40-9, Zeigler Bros.)

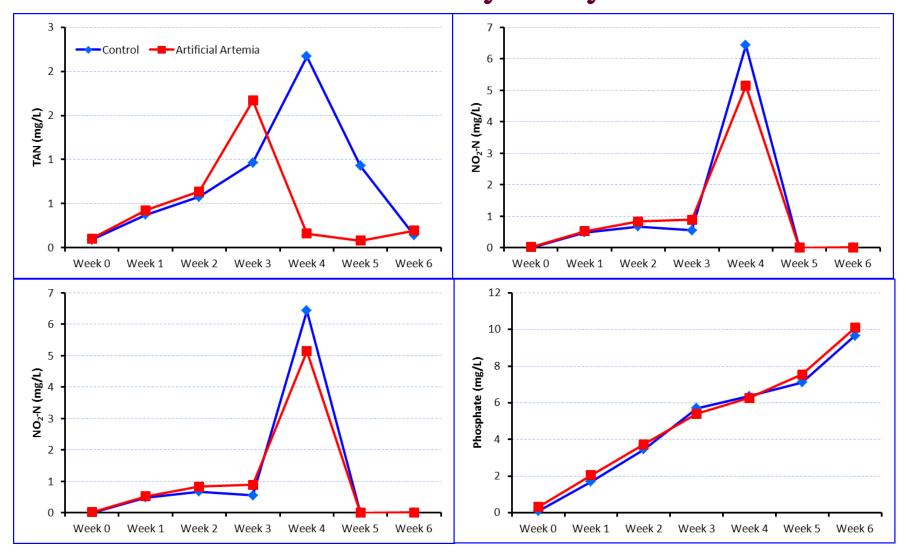
- ➤ Water temperature, salinity, dissolved oxygen and pH were monitored twice daily; settleable solids (SS) were monitored once daily; ammonia-N, nitrite-N, nitrate-N, alkalinity, turbidity, TSS, VSS, and cBOD5 were monitored once a week
- > Freshwater was added weekly to offset evaporative losses

- Weekly monitored water quality parameters remained within the acceptable range for the culture of this species and showed no significant differences between treatments
- ➤ No statistically significant differences were found between the two treatments in any of the daily WQ indicators monitored in this study

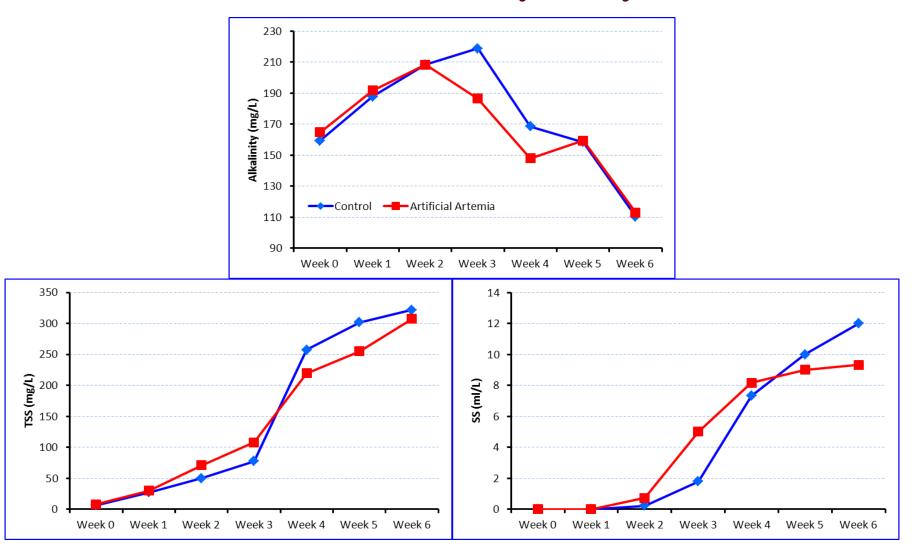


- ➤ Mean temperature, dissolved oxygen, and pH were 28.07±1.51 °C, 5.92±0.53 mg/L, and 7.58±0.01, respectively
- ➤ No differences were found between treatments in final weight, yield, FCR, and survival at the end of the study

- ➤ However, at Day 12, when feeding the EZ *Artemia* was ended, the shrimp fed this feed had 15.45% higher mean weight than that of the Control
- Three days later, the difference of mean weight between treatments dropped to 3.18%



Mean performance of *L. vannamei* in Control and EZ *Artemia* treatments


	Final Weight (g)	Yield (kg/m³)	FCR	Survival (%)
Control	3.56 ± 0.10^{a}	2.70 ± 0.10^{a}	0.84 ± 0.04^{a}	75.66 ± 1.15^{a}
Artificial Artemia	3.65 ± 0.23^{a}	2.80 ± 0.21^{a}	0.81 ± 0.04^{a}	76.73 ± 1.56^{a}

Weekly variations in water quality of the raceways during a 49 d nursery study

Weekly variations in water quality of the raceways during a 49 d nursery study

Conclusions

- The addition of 25% artificial *Artemia* to the nursery diet did not affect the water quality and performance of *L. vannamei* in the current study
- ➤ However, more studies are needed to evaluate the potential of EZ *Artemia* for replacement of natural *Artemia* under other experimental conditions, (e.g., higher density, poor culture conditions, increased substitution levels)
- Furthermore, the potential use of this product in hatcheries, where the nutritional value of *Artemia* is very important must also be evaluated

Acknowledgements

- Funding: USMSFP, Texas AgriLife Research; USAID, The National Academy of Sciences; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- Feeds: Zeigler Bros.
- ➤DO monitoring systems: YSI Inc.
- Foam fractionators: Aquatic Eco System
- ➤ Air diffusers: Colorite Plastics
- ➤ RWs liner: Firestone Specialty Products